LOS RAYOS X
 

 
LOS RAYOS X
MIS AFICIONES SON LAS CIENCIAS
Album de fotos cuba vacaciones
Curriculum vitae de RAMON DUBOIS DE LA PEÑA
Mis enlaces favoritos
Mis enlaces favoritos
ANIVERSARIO DE SAN JUDAS TADEO
COMO ENSEÑAR A RESOLVER PROBLEMAS DE FISICA Y MATEMATICAS
RAMON DUBOIS DE LA PEÑA
Y
MARTA ACOSTA SOSA
Imagen
imagen
imagen
¿QUÉ RAYOS SON LOS RAYOS X? ¿POR QUÉ USAR LOS RAYOS X?
Los rayos X fueron descubiertos de forma accidental en 1895 por el físico alemán Wilhelm Conrad Roentgen mientras estudiaba los rayos catódicos en un tubo de descarga gaseosa de alto voltaje.


¿QUÉ RAYOS SON LOS RAYOS X? ¿POR QUÉ USAR LOS RAYOS X?







Rayos X, radiación electromagnética penetrante, con una longitud de onda menor que la luz visible, producida bombardeando un blanco —generalmente de volframio— con electrones de alta velocidad. Los rayos X fueron descubiertos de forma accidental en 1895 por el físico alemán Wilhelm Conrad Roentgen mientras estudiaba los rayos catódicos en un tubo de descarga gaseosa de alto voltaje. A pesar de que el tubo estaba dentro de una caja de cartón negro, Roentgen vio que una pantalla de platinocianuro de bario, que casualmente estaba cerca, emitía luz fluorescente siempre que funcionaba el tubo. Tras realizar experimentos adicionales, determinó que la fluorescencia se debía a una radiación invisible más penetrante que la radiación ultravioleta (véase Luminiscencia). Roentgen llamó a los rayos invisibles “rayos X” por su naturaleza desconocida. Posteriormente, los rayos X fueron también denominados rayos Roentgen en su honor.





Los rayos X son radiaciones electromagnéticas cuya longitud de onda va desde unos 10 nm hasta 0,001 nm (1 nm o nanómetro equivale a 10-9 m). Cuanto menor es la longitud de onda de los rayos X, mayores son su energía y poder de penetración. Los rayos de mayor longitud de onda, cercanos a la banda ultravioleta del espectro electromagnético, se conocen como rayos X blandos; los de menor longitud de onda, que están más próximos a la zona de rayos gamma o incluso se solapan con ésta, se denominan rayos X duros. Los rayos X formados por una mezcla de muchas longitudes de onda diferentes se conocen como rayos X ‘blancos’, para diferenciarlos de los rayos X monocromáticos, que tienen una única longitud de onda. Tanto la luz visible como los rayos X se producen a raíz de las transiciones de los electrones atómicos de una órbita a otra. La luz visible corresponde a transiciones de electrones externos y los rayos X a transiciones de electrones internos. En el caso de la radiación de frenado o bremsstrahlung (ver más adelante), los rayos X se producen por el frenado o deflexión de electrones libres que atraviesan un campo eléctrico intenso. Los rayos gamma, cuyos efectos son similares a los de los rayos X, se producen por transiciones de energía en el interior de núcleos excitados. Ver Átomo; Radiactividad.





Los rayos X se producen siempre que se bombardea un objeto material con electrones de alta velocidad. Gran parte de la energía de los electrones se pierde en forma de calor; el resto produce rayos X al provocar cambios en los átomos del blanco como resultado del impacto. Los rayos X emitidos no pueden tener una energía mayor que la energía cinética de los electrones que los producen. La radiación emitida no es monocromática, sino que se compone de una amplia gama de longitudes de onda, con un marcado límite inferior que corresponde a la energía máxima de los electrones empleados para el bombardeo. Este espectro continuo se denomina a veces con el término alemán bremsstrahlung, que significa ‘radiación de frenado’, y es independiente de la naturaleza del blanco. Si se analizan los rayos X emitidos con un espectrómetro de rayos X, se encuentran ciertas líneas definidas superpuestas sobre el espectro continuo; estas líneas, conocidas como rayos X característicos, corresponden a longitudes de onda que dependen exclusivamente de la estructura de los átomos del blanco. En otras palabras, un electrón de alta velocidad que choca contra el blanco puede hacer dos cosas: inducir la emisión de rayos X de cualquier energía menor que su energía cinética o provocar la emisión de rayos X de energías determinadas, que dependen de la naturaleza de los átomos del blanco.
El primer tubo de rayos X fue el tubo de Crookes, llamado así en honor a su inventor, el químico y físico británico William Crookes; se trata de una ampolla de vidrio bajo vacío parcial con dos electrodos. Cuando una corriente eléctrica pasa por un tubo de Crookes, el gas residual que contiene se ioniza, y los iones positivos golpean el cátodo y expulsan electrones del mismo. Estos electrones, que forman un haz de rayos catódicos, bombardean las paredes de vidrio del tubo y producen rayos X. Estos tubos sólo generan rayos X blandos, de baja energía. Ver Ion; Ionización.
Un primer perfeccionamiento del tubo de rayos X fue la introducción de un cátodo curvo para concentrar el haz de electrones sobre un blanco de metal pesado, llamado anticátodo o ánodo. Este tipo de tubos genera rayos más duros, con menor longitud de onda y mayor energía que los del tubo de Crookes original; sin embargo, su funcionamiento es errático porque la producción de rayos X depende de la presión del gas en el tubo.
La siguiente gran mejora la llevó a cabo en 1913 el físico estadounidense William David Coolidge. El tubo de Coolidge tiene un vacío muy alto y contiene un filamento calentado y un blanco. Esencialmente, es un tubo de vacío termoiónico en el que el cátodo emite electrones al ser calentado por una corriente auxiliar, y no al ser golpeado por iones, como ocurría en los anteriores tipos de tubos. Los electrones emitidos por el cátodo calentado se aceleran mediante la aplicación de una alta tensión entre los dos electrodos del tubo. Al aumentar la tensión disminuye la longitud de onda mínima de la radiación.
La mayoría de los tubos de rayos X que se emplean en la actualidad son tubos de Coolidge modificados. Los tubos más grandes y potentes tienen anticátodos refrigerados por agua para impedir que se fundan por el bombardeo de electrones. El tubo antichoque, muy utilizado, es una modificación del tubo de Coolidge, con un mejor aislamiento de la carcasa (mediante aceite) y cables de alimentación conectados a tierra. Los aparatos como el betatrón (véase Aceleradores de partículas) se emplean para producir rayos X muy duros, de longitud de onda menor que la de los rayos gamma emitidos por elementos naturalmente radiactivos.
Los rayos X afectan a una emulsión fotográfica del mismo modo que lo hace la luz (véase Fotografía). La absorción de rayos X por una sustancia depende de su densidad y masa atómica. Cuanto menor sea la masa atómica del material, más transparente será a los rayos X de una longitud de onda determinada. Cuando se irradia el cuerpo humano con rayos X, los huesos —compuestos de elementos con mayor masa atómica que los tejidos circundantes— absorben la radiación con más eficacia, por lo que producen sombras más oscuras sobre una placa fotográfica. En la actualidad se utiliza radiación de neutrones para algunos tipos de radiografía, y los resultados son casi los inversos. Los objetos que producen sombras oscuras en una imagen de rayos X aparecen casi siempre claros en una radiografía de neutrones.





Los rayos X también producen fluorescencia en determinados materiales, como el platinocianuro de bario o el sulfuro de cinc. Si se sustituye la película fotográfica por uno de estos materiales fluorescentes, puede observarse directamente la estructura interna de objetos opacos. Esta técnica se conoce como fluoroscopia. Ver Fluoroscopio.
Otra característica importante de los rayos X es su poder de ionización, que depende de su longitud de onda. La capacidad de ionización de los rayos X monocromáticos es directamente proporcional a su energía. Esta propiedad proporciona un método para medir la energía de los rayos X. Cuando se hacen pasar rayos X por una cámara de ionización (véase Detectores de partículas) se produce una corriente eléctrica proporcional a la energía del haz incidente. Además de la cámara de ionización, otros aparatos más sensibles como el contador Geiger o el contador de centelleo también miden la energía de los rayos X a partir de la ionización que provocan. Por otra parte, la capacidad ionizante de los rayos X hace que su trayectoria pueda visualizarse en una cámara de niebla o de burbujas.
Los rayos X pueden difractarse al atravesar un cristal, o ser dispersados por él, ya que el cristal está formado por redes de átomos regulares que actúan como redes de difracción muy finas. Los diagramas de interferencia resultantes pueden fotografiarse y analizarse para determinar la longitud de onda de los rayos X incidentes o la distancia entre los átomos del cristal, según cuál de ambos datos se desconozca (véase Interferencia). Los rayos X también pueden difractarse mediante redes de difracción rayadas si su espaciado es aproximadamente igual a la longitud de onda de los rayos X.
En 1930 empieza la TOMOGRAFIA EN FRANCIA con VOCAGE.
En 1950 se descubre el intensificador de imágenes y la automatización. En 1958 el uso médico de los ultrasonidos empieza su aplicación en ginecología y obstetricia.
En los 60’s se ha desarrollado el ESCANER ; es un estudio de la absorción de un haz de rayos mediante ordenador. HOUNSFIELD uno de los investigadores recibió el premio NOVEL.
Ha sido la primera gran aplicación de la informática en la radiología.
Mas recientemente ha aparecido la RESONANCIA NUCLEAR MAGNETICA (RNM) que parece revolucionar de nuevo la imagen diagnostica. Las imágenes obtenidas mediante la utilización de campos magnéticos potentes son extremadamente precisas y no parecen producir ningún riesgo al paciente.
Aunque no es RAYO X es lo más nuevo en ayuda para diagnostico.

LA RADIOGRAFIA ES LA PRODUCCION DE UNA IMAGEN FOTOGRAFICA DE UN OBJETO MEDIANTE EL USO DE LOS RAYOS X Y PASAN ATRAVES DE UN OBJETO LLEGANDO A UNA PELICULA. EN ODONTOLOGIA SE UTILIZAN PARA PROVEER INFORMACION SOBRE LOS TEJIDOS PROFUNDOS NO VISIBLES A SIMPLE VISTA.

IMPORTANCIA DE LA RADIOLOGIA EN ODONTOLOGIA.











RESEÑA HISTORICA DE LA RADILOGIA DENTAL.
14 días después de que ROENTGEN anunciara su descubrimiento, el DR. OTTO WALKHOFF de Braunschweig, Alemania, realizó la primera radiografía dental . Su tiempo de exposición fue de 23 minutos.
El Dr. EDMUND KELLS, tomo la primera radiografía intraoral ; fue el primer dentista que utilizó la radiografía para procedimientos Odontológicos. En los incipientes días de la radiografía dental es difícil lograr exposiciones para reproducir y que fueran uniformes debido a la variedad de gases contenidos dentro del tubo. La practica recomendada por Kells, era colocar la mano del operador entre el tubo y el fluoroscopio, para poner el tiempo de exposición cada vez que se usara el aparato. La práctica daría por resultado la aparición de lesiones malignas.
WILLIAM HERBERT ROLLINS invento la primera unidad dental de rayos X en 1896.
WILLIAM D. COOLIDGE un empleado de la compañía General ELECTRIC en el año de 1913 fue el descubridor del tubo de tungsteno al alto vacío con energía estable y reproducible.
En los primeros días de radiología dental, todas las películas intraorales eran envueltas a mano por el operador o asistente. La compañía EASTMAN KODAK fabricó películas intraorales con envoltura en el año de 1913. Entonces fue fabricado el primer aparato dental de rayos X, con motivo comercial por la compañía AMERICANA DE APARATOS DE RAYOS X.
Se le conoce como el padre de la radiología dental moderna al DR. F. GORDON FITZGERALD, este logro el desarrollo de la técnica de paralelismo del cono largo.
El DR. HOWARD RILEY RAPER de INDIANAPOLIS, Indiana en 1924, invento la película de aleta mordible, y escribió el primer libro de texto de radiología dental.
El tubo que invento Coolidge en 1913 tuvo aplicación hasta 1923 que se coloco en el interior de una versión miniatura del tubo de la cabeza del aparato de rayos X, inmersa en aceite. Este fue el precursor de todos los modernos aparatos dentales de rayos X. Se fabricó por la COIRPORACION DE RAYOS X VICTOR DE CHICAGO, que se convirtiera en CORPORACION DE RAYOS X GENERAL ELECTRIC

doctor UPDEGRAVE también practicó la técnica del plano agudo de la articulación temporomandibular.

RADIOLOGIA PANORAMICA Aunque la primera radiología panorámica se publicara por el profesor YRJO V. PAATERO de HELSINKI, FINLANDIA, el primer aparato de rayos X panorámico que se produjo con propósitos comerciales fue el PANOREX fabricado por la compañía S.S.WHITE. Muchos del primer trabajo encaminado al perfeccionamiento del aparato lo realizó JOHN W. KAMPULA, GEORGE DICKSON y el doctor DONAL HUDSON. Pero es aceptado que el padre de la radiología panorámica es el profesor PAATERO.
El DR. EIKO SAIRENJI del Japón, fue el primero en realizar el término ORTOPANTOMOGRAFO para describir la película panorámica.

La idea de hacer incidir haces ya sea de rayos X o de neutrones sobre una muestra consiste en meter en la sustancia sondas para que "vean" lo que hay dentro de ella. Es justamente la información que llevan a su salida la que debemos extraer y darle sentido. Por supuesto que la sonda que se introduzca debe ser la apropiada para que se pueda registrar el fenómeno que se quiere analizar. Como se hizo ver ampliamente, de todas las posibles ondas electromagnéticas son justamente los rayos X las sondas apropiadas para los propósitos de encontrar estructuras. Si se usan neutrones, los idóneos son los lentos.
Nos hemos dedicado a hablar acerca de los principios físicos en que se basan los científicos para obtener las conclusiones sobre las estructuras y otras características de las sustancias. Hemos de añadir que una vez entendidas estas bases y convencidos de su exitosa aplicación, se han desarrollado técnicas rutinarias para la identificación de estructuras de sustancias. Una vez que se conocen los patrones de difracción por rayos X de cristales, se recopilan sistemáticamente en algo análogo a tablas de referencia. Así, al analizarse una muestra cuya estructura es desconocida, se compara su patrón de difracción por rayos X con los ya conocidos y así es como se puede saber cuál es la estructura de la muestra. De esta manera se tiene una especie de catálogo de "huellas digitales" con las que se puede identificar estructuras de sustancias. Este tipo de identificación tiene muchas aplicaciones tanto científicas como industriales.
Hemos llegado al final de nuestra exposición en la que se ha mostrado una bella experiencia de la historia de la ciencia. Esperamos que el lector haya tenido una placentera y fructífera lectura, que le haya interesado y le sirva de estímulo para continuar informándose sobre estos temas científicos.
Escríbeme
Me interesa tu opinión puedes escribime a francisco12@hispavista.com
Si te interesa el tema COMO ENSEÑAR A RESOLVER PROBLEMAS DE FISICA Y MATEMATICAS,puedes ir a la siguiente pagina http://www.galeon.com/metodologia/
FISICA APLICADA A LA ELECTRONICA
ELEMENTOS FUNDAMENTALES SOBRE LA TEORIA DE LOS SEMICONDUCTORES.